CQSS:2030 Science synthesis

Compilation of science and knowledge to support the review of the regional NRM Strategy 2013-2014 Fitzroy Basin Authority Incorporated (FBA) would like to acknowledge the invaluable input, advice and technical/scientific knowledge of everyone that has contributed to the review of scientific information. Especially Bruce Forster, John Ross, Bruce Pearce, Daniel Larson, John Platten, Alistair Melzer, Jane Waterhouse, Bob Miles, Adam Northey, Piers Harper, Rachel Bryan, Cassandra Bouna, Shannon van Nunen, Shane Westley and Tom Coughlin. Through their work, the CQSS:2030 has a solid foundation of scientific and technical knowledge and understanding.

© Fitzroy Basin Association Incorporated, 2014

ISBN:

Citation

Fitzroy Basin Association Inc. Level 1, 80 East Street Rockhampton Q 4700 PO Box 139 Rockhampton Q 4700

Disclaimer

The development of this report was supported by the Fitzroy Basin Association Incorporated (FBA) through funding from the Australian Government.

This report has been prepared with due care and diligence using the best available information at the time of publication. Fitzroy Basin Association Incorporated and the Australian Government hold no responsibility for any errors or omissions and decisions made by other parties based on this publication.

The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or Fitzroy Basin Association Inc.. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth and Fitzroy Basin Association Inc. do not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication.

Australian Government

Contents

Introduction	1
Science framework	1
Approach	2
Results	5
Appendix A Asset summaries	6
Soils	6
Groundwater	
Freshwater rivers and wetlands	
Terrestrial ecosystems	
Coastal and marine	21
Climate and air	

Introduction

The Central Queensland Sustainability Strategy 2030 (CQSS) provides a guiding document for Natural Resource Management (NRM) in central Queensland. Developed by the Fitzroy Basin Association Incorporated (FBA) on behalf of the regional community, the plan outlines:

- the natural assets and values of the region
- the pressures on those assets (including climate change) and associated environmental, social and economic risks
- broad strategies to address these risks.

In 2013-14, FBA has been reviewing the Central Queensland Sustainability Strategy 2004 (CQSS).

This document reports on the science synthesis process that has been used to support the strategy's review. Details of the review process can be found in the document *CQSS:2030 Strategy review process*. Additional scientific review and advice may be sought prior to the completion of the strategy.

Science framework

The science synthesis process has been undertaken to update the strategy's knowledge base, specifically addressing increasing pressures (coal, infrastructure, coal seam gas and coastal development) and climate change risks. Moving beyond a 'snapshot in time' approach, the process has sought to look forward at emerging and growing issues. This is not without challenges — looking forward involves significant uncertainty in climate change, development, and adaptation in human and natural systems.

The approach adopted seeks to bridge the established natural asset approach and contemporary systems thinking (resilience) concepts. The science framework recognises the importance of the resource base's natural assets and users. These are linked via benefits and impacts that connect both system components, against a backdrop of ongoing change and adaptation to natural and anthropogenic drivers at a range of scales (Figure 1).

Figure 1. Science framework for the review of CQSS

In addition to the natural assets and resource users, there are 'natural' processes that can be exacerbated by human impacts (vectors). Major classes of natural assets, resource users and vectors are listed in Table 1. The science synthesis processes has focussed on an asset-based structure, while strategy development incorporates a greater focus on resource users. Table 1. Classes of resource users, environmental vectors and natural assets

	Resource industries: agriculture, mining, fisheries	
Resource	Urban, industrial, infrastructure, ports	
	Community and Traditional Owners	
users	Environmental Services: carbon sequestration,	
	conservation, offsets and ecological markets	
	Other asset users	
	Drought and floods	
	Fire	
Environmental vectors	Weeds and pests	
	Changing climate	
	Salinity	
	Erosion	
	Soil	
	Groundwater	
Natural	Freshwater rivers and wetlands	
assets	Terrestrial ecosystems	
	Coastal and marine ecosystems	
	Climate and air	

Approach

The approach taken to the science synthesis process has sought to:

- retain an asset-based approach for continuity with the previous strategy and ready translation to spatial products
- incorporate, where practicable, elements of resilience and broader systems thinking approaches. This has principally occurred through a clearer recognition of the complex linkages and dynamics that operate between human activities and ecosystems at multiple scales.
- provide clear direction for resource management priorities at the regional scale, rather than a comprehensive audit of all assets and issues.
- identify linkages between natural assets and resource users where possible.

The process adopted was designed to do this in a systematic and consistent way across the different asset classes. The science synthesis process focussed on understanding the assets: their values and services, their condition and trend, current and future pressures and climate change risks. The science synthesis process articulated key attributes of the natural assets and NRM objectives, but did not directly draft strategies. This recognises the essential contribution that resource users have to make in the development and review of strategies — their pragmatic knowledge about how to most effectively engage their sector in adopting better practice. Drafting strategies has also been informed by community engagement and consultation processes, and NRM practitioner knowledge. Further consultation will be used to refine the strategy's draft regional objectives.

The science synthesis process has proceeded through the following steps.

1. Preparation

The resilience approaches of recent NRM plans from Queensland and NSW were reviewed. Team members participated in workshop on resilience approaches (facilitated by Paul Ryan) and attended a debrief of NSW regions' experience of resilience-based planning. The science framework was developed and the broad process design completed.

2. Desktop review and compilation exercise

A comprehensive review of scientific and technical papers and reports since the last strategy review process (2004) was completed. Excerpts, figures and models were compiled for each natural asset. At the same time, relevant spatial information was identified, mapped and collated for easy access. A reference library was built during this process.

3. Engagement of expert panel

An expert panel was chosen to provide regionally specific scientific expertise. Panel members comprised scientists and FBA staff to build capacity and share knowledge. Working in pairs, asset-based teams worked through a series of templates that guided them through a synthesis process. This included:

- contributing to the completion of the desktop reviews
- an asset summary template that included summaries of asset attributes and values, condition and trend
- a 'pressure matrix' that rated the importance of each pressure (resource use and environmental vectors) against the asset components
- advice on measures and indicators of asset health (potential targets)
- recommended strategies to achieve those targets.

Members of the expert panel are listed in Table 2.

Table 2. Members of the expert panel

Natural asset	Independent scientist	FBA theme leader
Soils	Bruce Forster and John Ross (DNRM)	Adam Northey
Groundwater	Bruce Pearce (DSITIA) and Daniel Alarsen (DNRM)	Piers Harper
Freshwater rivers and wetlands	John Platten (consultant)	Rachel Bryan and Tom Coughlin
Terrestrial ecosystems	Alistair Melzer (CQU)	Cassandra Bouna
Coastal and marine	Jane Waterhouse (C2O consulting)	Shannon van Nunen
Climate and air	Bob Miles (consultant)	Shane Westley

4. Expert panel workshop

A synthesis workshop brought the expert panel together for two days to review outputs from all themes.

5. Finalisation of synthesis documentation

Documentation was finalised with some further clarification, drafting and review of some sections. The final set of documentation includes:

- an evidence library
- the desktop reviews (collation of referenced extracts from reports and maps for each asset)

• summary worksheets that summarise and prioritise information including asset values, trends and benchmarks, pressures and synthesis statements.

6. Engagement of Stream 2 projects

Stream 2 research projects were funded by the Australian Government to support the strategy review process. Unfortunately the timing of these projects prevented their direct contribution to the science synthesis process. However, a key output has been the downscaled climate projections work undertaken by BOM and CSIRO. This has been used (in draft form) to update the climate synthesis findings. This and the outputs from other projects (as they become available in the near future) will provide a foundation for ongoing climate adaptation planning and programs in the region.

Results

The science synthesis process achieved its objectives of a systematic collation and synthesis of contemporary science to support the review of CQSS. In the process, large working documents have been produced. For pragmatic reasons (the information has a limited audience and will rapidly be out of date) only summary information will be prepared for public review. Appendixes A and B provide extracts of these working documents to demonstrate the process used. The details presented there should be treated as draft versions. Further iterations in different formats have subsequently been prepared as part of the draft strategy.

Feedback from stakeholders demonstrated that the collation of contemporary information associated with the last strategy review was highly valued by stakeholders, but that this information (and the strategy itself) rapidly became out of date. CQSS:2030 and its supporting information will be primarily delivered to the public via a web portal. This approach allows key information to be kept current and links to other sites and activities provided. Facilitating open access to relevant information is a foundation principle of natural resource management.

Appendix A Asset summaries

Note that the following pages contain extracts of working documents. These have not been formatted or edited for general consumption. Rather they are provided as evidence of a systematic process to collate, summarise and synthesise scientific information to support the strategy review process. The final version of this information is included in the draft CQSS:2030 document.

Soils

VALUE	DESCRIPTION (SOILS)	SIGNIFICANCE TO NATURAL RESOURCES	SIGNIFICANCE FOR HUMAN USE
Landscape	Galloway (1967) describes the landform of the Fitzroy Basin (Map 2) as "a central lowland surrounded by a highland rim".	The foundation of the region	The foundation of the region
Geology	The geological structure of the Fitzroy Basin is dominated by two major sedimentary basins, the Bowen Basin in the north and the Surat Basin in the south, and the New England Fold Belt in the east (Draper 1992; Malone 1966).	The foundation of the region	The foundation of the region
Land Description Categorisation	Land has been categorised around the basic natural resources of the central Queensland region. We recognise three formats: Land Systems and Land Resource Areas, Land Zones and Grazing Land Types. All three are based fundamentally on landform and geology, so mapping using the different types is similar across the region.	The foundation of the region	The foundation of the region

VALUE	DESCRIPTION (SOILS)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Soil Types	A map of Australian Soil Classification (Ashton and McKenzie 2001) shows that the soils for the area include mainly vertosols, sodosols, dermosols, kandosols, chromosols, tenosols, rudosols and anthroposols, and smaller areas of ferrosols, kurosols, hydrosols, podosols, and calcarosols.	The foundation of the region	The foundation for the region and set the usability for Agriculture in the region • vertosols with their high water-holding capacity are the main soil used for rain- fed cropping • dermosols, kandosols and tenosols with their good drainage are used for tree and vine crops, generally with irrigation • dermosols, kandosols and tenosols with a friable, gravel-free surface are used for peanut cultivation • a wide range of soils are used for grazing, but those with high fertility are most suitable for cattle fattening.
Soil Groundcover	Groundcover refers to organic material and consists of senescent and green grasses, forbs, low shrubs, cryptogams and vegetation litter. Groundcover is a contributor to soil carbon. Maximising groundcover is the most critical issue for soil health, land condition and maximising water infiltration.	Groundcover is critical to retaining soil integrity.	Groundcover is critical to maximising agricultural productivity and to reducing sedimentation and contamination of run-off into streams.

VALUE	DESCRIPTION (SOILS)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Salinity	Sixty-eight salinity expressions were identified, affecting an area of approximately 2,246 hectares. More than half (38) are located in the high rainfall areas near the coast in the Fitzroy Catchment. Predictive modelling has been completed for the region.	Salinity impacts include: • degraded water quality in aquatic habitats and rivers • reduced growth by crops, pastures and trees • poor quality water for human and stock consumption • deterioration of built and transport assets and infrastructure such as houses, roads and rail. Vertosols — the region's primary soil for agriculture — are where the majority of salinity expressions occur in the region.	Vertosols — the region's primary soil for agriculture — are where the majority of salinity expressions occur in the region. One component of the salinity stage is the time lag between implementation of a land use change and the salinity response. This could be a large emerging issue for the region.
Acid Sulfate Soils	Acid sulfate soils are soils or sediments containing sulfides (primarily pyrite) or an acid producing layer as the result of sulfide oxidation. This commonly occurs on tidal land and low-lying, very poorly drained coastal land at elevations less than 5m AHD (Australian Height Datum) in the region.	This land is not hospitable to vegetation. Acid leaching can contaminate water and soil.	Development of these lands is costly and risky. Increasing sea inundation may reduce the amount of available soil to expose; however, it is likely that with sea level rise adjacent soils will deteriorate.
Soil Erosion	Soil erosion occurs when soil particles are detached and transported elsewhere. Erosion is a natural process and is non-reversible. There are several types of erosion (rill, sheet, gully, overland, riverbank, wind). Run- off is a dominant feature of the region and consequent water erosion is a major threat to the resource base. Hillslope erosion and hillslope scalds, gully erosion, stream bank erosion occur throughout the region.	Water erosion is a major threa estimated that 4 million tonne annually from the Fitzroy Rive lagoon off Keppel Bay.	at to the resource base. It is as of sediment are discharged r into the Great Barrier Reef

VALUE	DESCRIPTION (SOILS)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Good Quality Agricultural Land and Strategic Cropping Land	Land capability and land suitability classification schemes are used in Queensland as the basis for identifying Good Quality Agricultural Land (GQAL). Strategic Cropping Land (SCL) is an important, finite resource that must be conserved and managed for long-term food and fibre production and regional growth. Currently, the state's SCL resources are subject to a range of competing land-use activities, including agriculture, mining, infrastructure and urban development.	GQAL and SCL have distinct soil and land properties that meet the requirement for agricultural crops.	Identifying and preserving these lands for sustainable production of food is important.
Soil Structure (Local Scale)	Soil structure influences pasture growth by controlling the movement of water, nutrients, air and root penetration. Surface soil structure influences water infiltration, soil erosion (including scalding) and seedling emergence. Sub-surface soil structure influences soil aeration, water storage and root penetration.	N/A	Critical to maintain in productive lands More important in cropping than grazing.
Soil Moisture (Local Scale)	Soil water is the main limiting factor for pasture growth and animal productivity. The ability of a soil to capture and store water so it is available for use by pasture for an extended time will depend on its inherent characteristics (soil texture, structure) in combination with its overall health. There is some regional mapping.	N/A	Critical to maintain in productive lands
Soil pH (Local	Soil pH influences nutrient supply, plant growth and the soil's ability to	Can impact natural	Critical to maintain in
Soil Nutrients (Local Scale)	Pastures need an adequate supply of soil nutrients to make best use of soil water, to grow quality feed for stock, and to ensure good ground cover. Pastures grow poorly if the soil cannot supply adequate amounts of these nutrients. While geology and soil development determine the total amount of nutrients in soils, in the short term, the amounts of nutrients available for growth are largely determined by the breakdown of organic material and the subsequent release of nutrients.	N/A	Critical to maintain in productive lands
Soil Biology (Local Scale)	Soil organisms help maintain soil fertility and health by regulating nutrient cycling, maintaining soil structure and interacting with plants in the ecosystem. Healthy populations of soil organisms require adequate supplies of plant organic matter, which is their main source of food.	N/A	Critical to maintain in productive lands

VALUE	DESCRIPTION (SOILS)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Soil Contamination (Local Scale)	Contamination of soil is a significant issue due to the large amount of heavy industry mainly on the coast. Also mining can leave significant contamination scars on the landscape as well as inversion or burial of soil profiles	Can impact natural values	Can impact human use
Soil Carbon	Soil carbon is the carbon stored within soil. Soil carbon is important for understanding soil health. Soil carbon is a balance between inputs (such as plant shoots, roots and leaves) and outputs (such as decomposition and conversion into carbon dioxide). The amount of soil carbon is determined by soil characteristics, climate and management practices.	Unknown	Unknown

Groundwater

VALUE	DESCRIPTION (GROUNDWATER)	SIGNIFICANCE TO NATURAL RESOURCES	SIGNIFICANCE FOR HUMAN USE
Groundwater Systems	The geological formations underlying the Fitzroy River surface water basin are dominated by two major sedimentary basins: the Bowen Basin in the north and the Surat Basin in the south. Other geological structures include the Drummond Basin in the west and the New England Fold Belt in the east. Within these geological structures, as well as overlying alluvial and tertiary systems, groundwater can be present.	N/A	In areas where groundwater is of reasonable quality and quantity, it is used for varied uses such as stock watering, agriculture and mining and industrial uses.
Groundwater Flow	Groundwater flow generally follows topography in local systems; however, can follow the direction of structural dip of deeper systems.	The flow of groundwater is particularly important to natural resources where it relates to discharge. Disruption to flow lines can disconnect interaction with Groundwater- Dependent Ecosystems.	The disruption of flow, primarily due to extraction, can cause drawdown effects on other users.
Groundwater Recharge	Recharge can occur through direct infiltration of rainfall or through recharge through stream systems. Direct recharge is generally low for most of the region. Major rainfall events recharge alluvium and tertiary layers through stream systems.	Balance of recharge to groundwater systems versus run-off to surface water systems.	Balance of recharge to groundwater systems versus run-off to surface water systems.
Groundwater- Dependent Biodiversity	Groundwater can typically support Groundwater-Dependent Ecosystems (GDEs) such as wetlands, riverine environments and dependent vegetation.	Supports natural environment	Wetlands and streams with base flow can provide water sources for human use; however, overall it would be minimal and localised in its benefit.

VALUE	DESCRIPTION (GROUNDWATER)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Groundwater Water Quality	Water quality naturally varies between different aquifers from good quality to brackish and salty water in some deeper systems. Natural water quality is dependent on the environment in which the stratum was formed, the mineral composition of the host rock, as well as the extent of recharge (link to fresher quality).	The functioning of natural resources is dependent on water quality. Decrease in quality can be adverse to certain species.	Industry, agriculture, domestic and stock watering supplies all depend on a level of quality. The quality required for each industry can vary; however, decrease in quality can make water unusable for some purposes.
Water Resource Extraction	The larger projects such as mining developments and the growing coal seam gas industry are predominantly located in the Bowen Basin. There are also clusters of agricultural development in some areas, usually associated with alluvial systems.	Extraction of groundwater can cause drawdowns in water levels. These drawdowns can alter movement of water to Groundwater-Dependent Ecosystems.	The extraction of groundwater can cause drawdown in groundwater levels. Depending on the extent, this can decrease the available supply.
Salinity	Land clearing over the catchment can cause rising water tables.	Salinity impacts include: • degraded water quality in aquatic habitats and rivers • reduced growth by crops, pastures and trees • poor quality water for human and stock consumption • deterioration of built and transport assets and infrastructure such as houses, roads and rail. Vertosols — the region's primary soil for agriculture — are where the majority of salinity expressions occur in the region.	Vertosols — the region's primary soil for agriculture — are where the majority of salinity expressions occur in the region. One component of the salinity stage is the time lag between implementation of a land use change and the salinity response. This could be a large emerging issue for the region.
Ecosystem Services	Sub-surface systems provide functions such as filtering, decontamination, re-mineralisation and cycling of nutrient functions. Vegetation also has a role in maintaining ecosystem services.	Provides for potential bio-degrad and decrease in nitrates	ation of organic contaminants

Freshwater rivers and wetlands

VALUE	DESCRIPTION (FRESHWATER RIVERS & WETLANDS)	SIGNIFICANCE TO NATURAL RESOURCES	SIGNIFICANCE FOR HUMAN USE
Overview	The Fitzroy is the largest east coast catchment in Australia with highly variable flow and extensive areas of ephemeral streams. Rainfall is highly seasonal with most major flows from January to March. Wetlands are found on floodplains and as perched lakes in the upper catchments.	Very significant	Very significant in the supply of drinking water, stock water and irrigation waters
Catchments and Wetlands	There are nine major catchments/sub-catchments in the strategy's area, all except the Calliope, Curtis Island and several small coastal catchments (Shoalwater and Water Park Creek) have been modified by dams and/or weirs.	Very significant	Very significant in the supply of drinking water, stock water and irrigation waters
	The strategy's area has extensive palustrine and lacustrine wetland systems. In the Fitzroy Basin 6,539 wetlands have been mapped and there are additional wetlands in the Boyne, Calliope and Curtis Island catchments. A number of these once natural wetlands have been modified by land use. There are also a number of constructed wetlands such as farm dams.	Very significant	Utilised as significant water source for agriculture
Habitat Availability	A variety of habitat types are required to support local aquatic plants and animals.	Very significant	Significant in maintenance of significant fish species
	Shallow flowing water/shallow pools are often highly oxygenated and critical to many species.	Very significant	Significant for stock watering
	Deep riverine pools provide refuge in low flow and drought periods.	Very significant	Very significant in the supply of drinking water, stock water and irrigation waters
	Palustrine and lacustrine wetlands are used by several species requiring water with slow flows. To function correctly they need to be connected to streams periodically.	Very significant	Significant in maintenance of significant fish species
	Streamside (riparian) vegetated habitat provides bank stability, a food source for aquatic animals and is important in the life cycles of many aquatic insects.	Very significant	Significant in maintenance of significant fish species
	Sand and gravel banks provide nesting sites and locations for reptiles	Very significant	N/A

VALUE	DESCRIPTION (FRESHWATER RIVERS & WETLANDS)	SIGNIFICANCE TO NATURAL RESOURCES	SIGNIFICANCE FOR HUMAN USE
	to warm themselves.		
	Current regional data sets on habitat condition are lacking (earlier habitat assessments in State of Rivers 1995-2005, Coastal Cooperative Research Council). Some riparian and wetland condition assessments are planned across the Great Barrier Reef under the Paddock to Reef Program.	Very significant	Significant in maintenance of significant fish species
Habitat Connectivity	Connectivity between different sections of a stream is important in maintaining biodiversity. Some fish require access between freshwater and estuaries to complete their breeding cycle, while others move to particular spawning sites on a stream. Movement between different river sections is also important to allow groups of each species to mix during breeding. This may be compromised by barriers such as weirs, crossings, fords etc. Changes to flow regimes can also compromise the triggers for spawning and other migrations as well as connectivity to wetlands.	Very significant	Very significant in maintenance of significant fish species
Significant Fauna and Flora	The Fitzroy is home to two fish species and one turtle species found nowhere else (endemic). Wetlands support a number of migratory birds and birds of conservation importance. The Fitzroy is the southern-most breeding site of the estuarine crocodile. Several fish of recreational and commercial importance use freshwaters at least as part of their life cycle. One critically endangered snail lives associated with mound springs. <i>Eucalyptus raveretiana</i> (black iron box) is a large eucalypt, listed as vulnerable, restricted to riparian zones and like all riparian species susceptible to loss by inundation and clearing associated with dams and weirs.	Very significant	Several fish of recreational and commercial importance use freshwaters at least as part of their life cycle.
Wetlands	There are nationally and internationally listed significant wetlands within the Fitzroy Basin.	Very significant	Very significant
Water Resources	There are three major dams and a number of weirs used to provide water for a variety of uses.	Very significant	Very significant
	There are three water resource plans developed to regulate water use to provide water for sustainable consumptive use and the environment.	Very significant	Very significant
	Change in the timing and volume of flows can impact the ecology of	Very significant	Very significant

VALUE	DESCRIPTION (FRESHWATER RIVERS & WETLANDS)	SIGNIFICANCE TO NATURAL RESOURCES	SIGNIFICANCE FOR HUMAN USE
	streams and wetlands.		
Water Quality	The highly seasonal and variable flows, along with erodible soils, result in relatively high sediment loads and turbidity in most streams.	Very significant	Very significant
	Salinity of waters is usually low; however, there are locations where salinity can be high, particularly in low flow periods and when groundwater is contributing to stream flows.	Very significant	Very significant
	Seasonal blue-green algal blooms can cause water quality problems, particularly in dams and weirs.	Very significant	Very significant
	Nutrient levels can be high and associated with some riparian land uses.	Very significant	Very significant
	Elevated dissolved metal levels and low pH can be found associated with some riparian land uses.	Very significant	Very significant
	Local water quality guidelines have been developed for the Fitzroy Basin.	Very significant	Very significant

Terrestrial ecosystems

VALUE	DESCRIPTION	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
	(TERRESTRIAL ECOSYSTEMS)	RESOUCES	
Bioregions	Bioregional composition of the strategy's area Brigalow 96 %, South East Queensland 1.5%, Central Queensland Coast 2.5%	Very significant	Very significant — bioregions define agricultural and living environment for human activity.
Regional	In the Fitzroy Basin NRM Region, 248 Regional Ecosystems (REs)	Very significant	REs provide ecosystem services.
Ecosystems	align to the Brigalow Belt North, 116 to the Central Queensland Coast and 64 to the South East Queensland bioregions.	A few REs support high levels of endemism and species of conservation significance.	
	*Note that only dominant Regional Ecosystems (RE) were used in		
	this analysis (the greatest percentage of a combined RE); the large number of dominant/sub-dominant RE combinations would have made the data very complicated.		
	Piodivorsity (PD) Status		
	Dominant REs BD stat="Endangered" Number 110; Area 414,398.8ha Dominant REs BD stat="Least Concern" Number 160; Area 4,994,230.6ha Dominant REs BD stat="Of Concern" Number 158; Area 1,331,517.5ha		
	Vegetation Management (VM) Class Dominant REs VM class="Endangered": 60 Area: 326,108.7ha Dominant REs VM class="Least Concern": 208 Area: 5,430,197.7ha Dominant REs VM class="Of Concern": 160 Area: 983,840.6ha		
	For more information about the above classifications please visit <u>www.qld.gov.au/environment/plants-</u> <u>animals/plants/ecosystems/biodiversity-status/</u>		

VALUE	DESCRIPTION (TERRESTRIAL ECOSYSTEMS)	SIGNIFICANCE TO NATURAL RESOUCES	SIGNIFICANCE FOR HUMAN USE
Flora and Fauna Diversity	See WildNet data (DSITIA) for numbers of species (flora and fauna). A number of species are at their distribution limits in the catchment area. Some are endemic to the region. There is a high degree in variability of species richness in sub- catchments, depending on land use history.	Very significant	High cultural significance Biodiversity has an important role in maintaining soil fertility, nutrient cycling, and other ecosystem services.
			Historically important in development of human solutions
Habitat Availability	Land under conservation tenure provides the core refugia for species in the region, although most available habitat exists outside of protected areas, and in retained assets (e.g. remnant vegetation) in agribusiness, mining, industrial and peri-urban land. This is best assessed in terms of mapped remnant vegetation and high value regrowth.	Very significant	Habitat availability is the foundation of the above values.
Habitat Condition	Most habitats are fragmented due to land use. Condition within fragments and remnants is determined by on-ground management and environmental effects, but is generally poor.	Very significant	Habitat availability is the foundation of the above values.

VALUE	DESCRIPTION	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
	(TERRESTRIAL ECOSYSTEMS)	RESOUCES	
Habitat	Connectivity of habitats is poor at the local level. Opportunities	Very significant	Habitat availability is the
Connectivity	remain to maintain or restore connectivity at the regional level.		foundation of the above values.
	Key regional corridors, identified at the 2013 'Brigalow Belt Strategic		
	Offsets Corridors Workshop' include:		
	-Great Dividing Range, both north and south		
	-Kroombit and Connors ranges		
	-Carnarvon to Kroombit link east to west		
	-Blackdown to Taunton to Fitzroy		
	-Coastal plains from St Lawrence and west to Clark and Connors		
	ranges		
	-Shoalwater Bay to Junee Tableland, including Torilla Plains		
	-Shoalwater to Nebo/Connors Range		
	-Kroombit to Burnett		
	-Taroom Wetlands to Carnarvon		
	-Castlevale Hub		
	Fitzroy Delta (Directory of Important Wetlands)		
	-many opportunities at the local scale		
Species	Different species are resilient at different levels to change. Each	Very significant	Likely very significant (high
Adaptability	species will respond differently and at different rates to impacts and		uncertainty)
	environmental pressures. For example, a species that exists only on		
	top of a mountain range would have very low resilience as there are		
	no further habitats to move to. Consequently, climate change effects		
	will be difficult to manage and require considerable investigation.		
Significant Fauna	Species lists need to be updated. Significant fauna includes species	Very significant	Iconic species are of cultural
	under threat as well as iconic species such as koalas, echidnas,		significance and contribute to
	platypus, and those of economic benefit through providing key		tourism. Economic benefits are
	ecosystem services and attracting tourism).		derived from some species e.g.
			kangaroos.
	The Brigalow Belt and South East Queensland bioregions have 12-		
	13% of their vertebrate animal species threatened, that is in the		
	order of 101-120 threatened species in each region — the highest in		
	Queensland. There are 45 priority species in the region. There are		
	15 well-known species with high conservation status.		

VALUE	DESCRIPTION	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
	(TERRESTRIAL ECOSYSTEMS)	RESOUCES	
Significant Flora	Species list needs to be updated. Significant flora includes species under threat as well as iconic species such as the Byfield fern, and of economic benefit such as cycads, forest species and native species with potential horticultural significance.	Very significant	Iconic species are of cultural significance, including Indigenous interests, and contribute to tourism. Economic benefits are derived from some
	There are 12 iconic and threatened species and 36 species on the Priority Species list.		species e.g. cycads.

VALUE	DESCRIPTION	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
	(TERRESTRIAL ECOSYSTEMS)	RESOUCES	
Significant Ecosystems	Iconic ecosystems in the region are Brigalow, Serpentine, Semi- evergreen vine thicket and Natural grasslands of the Central Highlands. Assemblages of ecosystems that support significant species such as fruit pigeons and flying foxes should be considered significant ecosystems. All rainforest types should be considered significant ecosystems (not only Semi-evergreen vine thicket). Biodiversity (BD) Status Dominant REs BD stat="Endangered" Number 110; Area 414,398.8ha Dominant REs BD stat="Least Concern" Number 160; Area	Very significant	Iconic ecosystems are important for recreation, tourism and cultural purposes. Some provide the basis for economic returns as well as providing ecosystem services. They also support key flora and fauna.
	4,994,230.6ha Dominant REs BD stat="Of Concern" Number 158; Area 1,331,517.5ha 		

Coastal and marine

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Coastal and	The region has diverse coastal and marine ecosystems with high social	Very significant	High social and economic value
Marine Systems	and ecological value. It includes coastal wetlands and floodplains,		for local and regional
	estuaries, mangroves, fish habitat, coastal dunes, coral reefs, seagrass		communities
	meadows, island communities. Coastal and marine systems are under		
	increasing threat from declining water quality, coastal development		
	and changing climate and are generally in declining condition.		
Ocean Systems	The region is characterised by several large and shallow bays and large	Very significant	High social and economic value
	tidal cycles. The estuarine environment is relatively large and highly		for local and regional
	dynamic. The area has had some of the most significant coral		communities
	bleaching events due to elevated sea temperatures. Ocean		
	acidification is likely to be an increasing threat to coral reefs in the		
	region.		
Weather and	Expanding coastal development and changes in coastal erosion rates	Very significant	High social and economic value
Coastal Erosion	associated with a changing climate are likely to place increasing		for local and regional
	pressure on the coastline. In cases where tidal/hydrological regimes		communities
	will change rapidly there is a risk that the change from a freshwater		
	species dominated to brackish/marine dominated species may lead to		
	significant destabilisation of ecosystem services. Significant		
	perturbation events during this transition may lead to significant		
	changes to topography/bathymetry of systems and the type of		
	systems they can support long-term.		
Acid Sulfate	Acid sulfate soils pose a threat to coastal and marine ecosystems when	Very significant in coastal	High social and economic value
Soils	exposed and not managed appropriately. Detailed mapping of acid	environments.	for local and regional
	sulfate soils in the region has been completed.		communities

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Biodiversity:	A diversity of high value coastal and marine habitats exist in the	Very significant	High social and economic value
Overall Habitat	region. Habitat types include coral reefs, seagrass meadows, coastal		for local and regional
	wetlands, estuaries, coastal dunes, floodplains, coral cays and islands.		communities
	These provide habitat for a wide range of fish, marine mammals,		
	reptiles, water birds, macroalgae and others. Habitats are generally		
	under increasing threat from degraded water quality, extreme		
	weather events, expanding coastal development and infrastructure		
	and increasing sea surface temperature. Regionally specific		
	information on some species was difficult to source.		
Biodiversity:	Coastal ecosystems provide an important link between terrestrial and	Very significant	High social and economic value
Habitat	marine ecosystems. GBRMPA has generated maps of connectivity of		for local and regional
Connectivity	hydrological and ecosystem function which show significant		communities
and Condition	modification of habitat connectivity in the region.		
Biodiversity:	The health and resilience of fish assemblages in central Queensland is	Very significant	High social and economic value
Fish	average. In areas that receive waters from highly modified catchments		for local and regional
	(or regular dredging) fish health is most likely impacted from a decline		communities
	in water quality leading to increases in disease and stress. Many high		
	value commercial fish species exist in the region. For commercial		
	marine fish species, reef-wide figures indicate that target species are		
	sustainably fished although regional data has not been accessed. Fish		
	barriers in coastal areas pose significant threats to habitat connectivity		
	and fish life cycles.		
Biodiversity:	The island groups in the region (particularly Peak, Wild Duck, Curtis)	Very significant	N/A
Reptiles	and the islands and cays of the Capricorn-Bunker group (e.g. Heron		
	and Lady Musgrave islands) provide important nesting sites for		
	loggerhead, green, hawkesbill and flatback turtles. Populations are		
	under threat from large-scale flood events (particularly 2011) and loss		
	of seagrass meadows as a major food source, and issues associated		
	with coastal and port development including increased lighting, boat		
	strike, marine debris and noise. Crocodiles also inhabit the region and		
	habitat loss is most likely the greatest threat to their health.		

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Biodiversity:	Three species of inshore dolphins inhabit the Fitzroy estuary: two are	Very significant	N/A
Mammals	listed as 'near threatened' under Qld legislation. Genetically unique		
	populations inhabit areas of increasing port activity — particularly the		
	Fitzroy estuary and delta area. These species are under increasing		
	threat from noise, loss of habitat and potential bioaccumulation of		
	contaminants. Dugongs inhabit the region but are generally sparsely		
	distributed and threatened by loss of seagrass meadows caused by		
	terrestrial run-off and dredging activities, boat strike and noise, and		
	potential bioaccumulation of contaminants. Whales also transit the		
	area in August to October and populations are increasing. There is		
	evidence that changing sea surface temperatures are influencing		
	foraging behaviours and reproductive success of marine mammals.		
Biodiversity:	Wetlands of the delta and floodplain systems support a wide diversity	Very significant	N/A
Water Birds	of coastal and migratory birds. Important populations of migratory		
	seabirds also inhabit the islands and sand cays, particularly in the		
	Capricorn-Bunker group. Major threats are habitat loss and warming		
	climates, which are likely to affect breeding and feeding patterns, and		
	for seabirds, possibly access to food sources. Large declines in		
	populations of some species have been recorded in recent years.		
Biodiversity:	Islands support a wide diversity of invertebrate populations, and	Significant	N/A
Fauna	benthic invertebrates are important species in the marine food chain.		
Invertebrates	These species are highly sensitive to increasing sea temperatures. Loss		
	of these species will have consequences for reef structure, nutrient		
	cycling and biofiltration of sediments and nutrients.		
Biodiversity:	Increased nutrient inputs can affect the presence and growth of	Significant	N/A
Flora	macroalgae and shift the balance in coral reef communities.		
Macroalgae			
Biodiversity:	Marine microbes are a fundamental part to ecosystem function and a	Significant	N/A
Marine	critical component to food webs. Disease events are reported to be		
Microbes	increasing and have been linked to warmer sea temperatures.		

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Ecosystems:	Beach scrub: Patches occur on Balaclava Island and more widely on	Very significant	N/A
Coastal	Curtis Island. This vegetation type is threatened by coastal		
Terrestrial	development, pests, weeds. Other vegetation types are covered in		
	terrestrial assets.		
Ecosystems:	Important mosaic of coastal and estuarine wetlands exist in the region,	Very significant	Very significant in maintenance
Coastal and	many within the delta area. Shoalwater Bay and Corio Bay are Ramsar-		of significant fish species
Marine	listed wetlands. Several nationally listed wetlands also occur in the		
Wetlands	region. Marine wetlands incorporate reef, seagrass and pelagic		
	communities. These assets are under increasing threat from pests and		
	weeds, terrestrial run-off, catchment and hydrological modification,		
	increased frequency of extreme weather events and increasing		
	temperatures.		
Ecosystems:	At least 13 species of mangroves occur throughout the lower reaches	Very significant	Very significant in maintenance
Mangroves and	of the estuary and along minor tidal creeks and provide important		of significant fish species
Tidal	refuge and feeding grounds for marine fauna. Saltmarsh wetlands are		
Saltmarshes	found on the landward side of mangroves, and may be bare (salt flats)		
	because of high salinity, or vegetated. The Fitzroy River Delta,		
	including Balaclava Island, is dominated by saltmarshes, with fringing		
	mangrove communities. Mangroves and saltmarshes will be affected		
	by sea level rise, reduced rainfall, increasing temperature, and changes		
	to ocean circulation in the medium to longer term.		
Ecosystems:	The region's pelagic environments are diverse and organisms interact	Significant	Significant in maintenance of
Pelagic	with the physical environment. Pelagic environments will be most		significant fish species
Environments	affected by changes to ocean circulation, increasing sea temperature,		
	ocean acidification and changes in sea surface temperature and		
	currents, as measured by the El Nino-Southern Oscillation Index		
	(ENSO). Their vulnerability is moderate, particularly because of the		
	sensitivity of plankton to environmental changes, and the consequent		
	implications for the productivity of the Great Barrier Reef ecosystem.		

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Ecosystems:	The area of monitored sub-tidal seagrass and modelled deep water	Very significant	Significant in maintenance of
Seagrass	(>15m) seagrass in the Fitzroy marine NRM region is estimated at		significant fish species
	5,775 km ² . The Reef Rescue Marine Monitoring Program includes		
	three monitoring locations in the Fitzroy Region: Shoalwater Bay,		
	Great Keppel Island and Gladstone Outer Harbour. Each has received		
	an overall rating of poor or moderate, taking into account several		
	indicators of seagrass health. The reproductive effort measured at the		
	coastal intertidal sites was reported as very poor, which is particularly		
	concerning. Recent losses are caused by water quality impacts —		
	particularly turbidity (terrestrial run-off and dredging), also recent		
	cyclones in localised areas.		
Ecosystems:	Coastal habitats are an important interface between land and sea.	Significant	Significant in maintenance of
Coastline	They have a critical role in the connectivity of the Great Barrier Reef		significant fish species
Ecosystems	ecosystem, and provide nutrient cycling, primary production,		
	biofiltration, critical habitat and coastal protection. They are		
	moderately vulnerable to climate change, particularly sea level rise,		
	changes to rainfall regimes and flood events, and increases in sea		
	temperature. Human-induced changes to dune systems and degraded		
	dune vegetation can significantly limit the protection provided to		
	development from coastal hazards, worsen wind erosion problems		
	and adversely impact neighbouring landforms.		

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Ecosystems:	The condition of coral reefs in the Great Barrier Reef is generally	Very significant	Significant in maintenance of
Coral Reefs	declining, with large scale reductions in coral cover measured through		significant fish species
	long-term monitoring programs. Inshore monitoring results show a		
	decline in coral cover at the monitoring locations in the Fitzroy region		
	from around 45% in 2005 at the commencement of the program, to		
	around 25% in 2012. The presence of juvenile coral colonies has		
	remained relatively stable. Hard coral cover has also declined at a		
	similar rate in the same period, with strong influence of bleaching,		
	cyclones and storms, and freshwater inputs in this period. The overall		
	score for coral community for 2012 (relative to the baseline) is very		
	poor. Over the period 2005-2011, coral communities in this region		
	have been impacted by a severe coral bleaching event in 2006		
	(although recovery from this specific event was considered to be		
	relatively rapid), and a combination of floods of the Fitzroy River and		
	storms in both 2008 and 2010 and then major flooding in 2011. The		
	proximity to the Fitzroy River, differences in community composition,		
	and subtle differences in the directional aspect of the reefs largely		
	explain the variable impacts of these disturbances across the		
	monitored reefs. All of these threats will continue to influence the		
	status and health of coral reefs in the region.		
Ecosystems:	The lagoon floor includes the non-reef seafloor inside the outer barrier	Very significant	Significant in the maintenance
Lagoon Floor	reef. It is a variable habitat and includes many species important for		of trawl fisheries
	marine health. The lagoon floor is impacted by trawling, and (closer to		
	the coast) dredging, disposal and re-suspension of dredge material,		
	land-based run-off and anchoring.		

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Ecosystems: Cays and Reef	There are several important island groups in the region including the Percy Islands, Curtis Island, Keppel Islands, and the Capricorn-Bunker group, which consists of several sand islands and cays. All of these islands provide important habitat and feeding grounds for a range of seabirds and terrestrial fauna. Islands and cays are particularly sensitive to sea level rise, changes to sea surface temperatures and currents (as measured by ENSO), increasing air temperature and changes to rainfall patterns. Due to their isolation and frequent remoteness, islands and cays are moderately to highly vulnerable to climate change. Implications for the Great Barrier Reef ecosystem include loss of critical habitat and breeding sites, particularly for protected species, and degradation of a unique component of the	Very significant	Significant for tourism, social and recreational values

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Water Quality	The decline of marine water quality associated with terrestrial run-off	Very significant	Very significant for marine
	from the adjacent catchment is a major cause of the current poor		dependent social, economic and
	state of many of the Great Barrier Reef's key marine ecosystems.		cultural values
	Monitoring results indicate that the overall condition of water quality		
	in the region is moderate. As part of the Reef Rescue Marine		
	Monitoring Program, the most inshore location, Pelican Island had a		
	water quality index of very poor. The long-term means of all four		
	indicators (turbidity, chlorophyll, particulate phosphorus, particulate		
	nitrogen) exceeded the guidelines. Barren Island and Humpy Island		
	were rated as good and very good respectively, in line with their		
	increasing distance from river influence. The main sources of		
	sediments and particulate nutrients in the region are from grazing		
	lands. Point sources of pollution contribute known contaminants to		
	waterways and are usually from industrial processes, mining		
	operations and sewerage treatment plants. Trace metals have been		
	found in sediments analysed from the Fitzroy estuary; the main		
	sources of these materials are likely to be industrial and port activities.		
	Pesticide monitoring in the region has shown concentrations of		
	tebuthiuron (used for woody weed control in grazing management)		
	that exceed the Great Barrier Reef Water Quality Guidelines. At		
	smaller scales, particularly in coastal seagrass habitats and freshwater		
	and estuarine wetlands, pesticides can pose a high risk. Recent		
	extreme weather — heavy rainfall, floods and tropical cyclones —		
	have had severe impacts on marine water quality and reef ecosystems.		
	Climate change is predicted to increase the intensity of extreme		
	weather events.		
Water Quality:	From end of catchment monitoring data in 2010-11, the largest loads	Significant	Very significant for marine
Pollution from	of TSS (20Mt), Total N (35.8kt), total P (15t) and PSII herbicides (6kt)		dependent social, economic and
Contaminants	were greatest from the Fitzroy River compared to all monitoring		cultural values
and	locations in the GBR catchments. These loads are mainly associated		
Eutrophication	with erosion from large areas of grazing lands, fertiliser application in		
	dryland cropping (grains) and irrigated cropping (cotton) and pesticide		
	use in cropping and grazing lands.		

VALUE	DESCRIPTION (COASTAL & MARINE)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN
		RESOURCES	USE
Water Quality:	Variability in rainfall and river flows is a feature of the catchment. The	Significant	Very significant for marine
River Plumes	Fitzroy River catchment is well known to produce major flooding after		dependent social, economic and
etc.	heavy rain events. The highest recorded flood in January 1918 reached		cultural values
	10.11 m on the Rockhampton City flood gauge, then a 9.3 m flood in		
	January 1991 and the recent 9.2 m flood in December 2010/January		
	2011. The Fitzroy River's flood plume extends over a wide area of		
	Keppel Bay and east across the Capricorn-Bunker group. Significant		
	coral mortality has been recorded following flood events, including the		
	January 1991 flood and across the reef during the 2010/11 flood. It is		
	predicted that there will be increased frequency of extreme weather		
	events in the region with a changing climate.		
Coastal and	The overarching consensus is that key reef ecosystems are showing	Very significant	Very significant for marine
Marine Health	declining trends in condition due to continuing poor water quality,		dependent social, economic and
	cumulative impacts of climate change and increasing intensity of		cultural values
	extreme events. This is correct for the Fitzroy region more specifically.		

Climate and air

Note that the latest regional climate scenarios have been modeled by CSIRO and BOM. These will be available from October 2014 and will provide more —recent information on climate trends and projections than the information provided below. Please refer to the climate asset information at www.cqss2030.com.au

VALUE	DESCRIPTION (CLIMATE & AIR)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
		RESOURCES	
Rainfall and	Modelling by the Queensland Centre for Climate Applications (QCCA)	Many plant communities will	The reduction in rainfall will
Evaporation	predict that by 2030, the coastal areas of Queensland are expected to	change in both structure and	result in a drier change for many
	experience a decrease in mean annual rainfall of 15%. It is expected	form. The hardy, more widely	inland areas. This drying of the
	that the decrease could be as much as 40% by 2070.	distributed species are more	environment may result in
		likely to expand due to their	further migration of residents to
		inherent adaptability and	coastal and urban regions.
		capacity to cope with extreme	Periodic water shortages can be
		variability in climate. Such plant	expected.
		species are likely to increase in	
		dominance.	
Temperature	Temperatures are steadily increasing with prediction of an increase of	Most plant communities and	A range of crop species such as
and Solar	up to 4 to 6 degrees Celsius by 2100. Evapotranspiration rates will rise	animals will experience	cotton and grapes will decline in
Radiation	up to 40%.	increased heat stress. Reduced	productivity in extreme
		frosting will have positive and	temperatures and go into water
		negative impacts on plant	deficit, causing production to
		communities.	decline. This will impact
			producer viability.
Wind	Average daily wind speeds have increased seasonally by up to 50%	The increase in wind will result in	Dust and drying conditions are
	near coastal communities. This trend is expected to increase with	increased evapotranspiration	expected to increase. This is
	increasing temperatures (due to atmospheric volatility).	and dust incidence throughout	already resulting in increased
		the region.	rates of dust-related health
			conditions such as asthma.

VALUE	DESCRIPTION (CLIMATE & AIR)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
		RESOURCES	
Seasonality	Shifting seasons of between 4 to 6 weeks are being recorded	Changing seasonality of rainfall	Potential shifts in cropping
	regionally with summer rainfall periods now occurring in late summer,	will lead to changes in cropping	regimes and crop type, such as
	early spring.	regimes. Some impact on	shifting from sorghum
		reproductive success in some	production to pulse crops.
		plant and animal species can be	
		expected.	
Sea Level	Sea levels have risen by up to 20cm regionally in the past 30 years in	The ingress of saltwater on the	Some loss of prime grazing lands
	Australia and the trend is expected to continue. Sea level rises of up to	region's coastal marine plains	on the coastal margins and
	0.68m by 2050 and 0.9m by 2100 have been predicted for the central	will alter local fresh and	impacts on coastal urban
	Queensland region.	saltwater ecosystems and cause	communities is expected. The
		some coastal salinisation. Fish	Fitzroy River Delta is also highly
		fecundity (fresh and saltwater	exposed to saltwater ingress.
		species and their survival will be	
500	See temperatures are rising and this trend is expected to continue	Impacted).	Impact on tourism fiching and
Sed	Sea temperatures are rising and this trend is expected to continue.	will result in increased coral	recreational use of the coastal
remperature		bloaching and soa algal blooms	
Coastal Sea	Coastal currents are expected to be affected influencing warm water	Upwelling of warm ocean	Increased impacts on
Flows	distribution on the Capricorn-Bunker Group and associated coral	currents may influence and	recreational and commercial
110003	reefs	exacerbate coral bleach	fishing likely, as well as coastal
		specifically in the Capricorn-	tourism
		Bunker and Keppel groups.	
Ocean	Increased absorption of CO ₂ is resulting in a decline in ocean pH	Through a series of chemical	Impact on coral reef ecosystems
Chemistry	(ocean acidification).	reactions that increases the	and the commercial usage of
		concentration of carbonic acid,	these zones — such as fisheries,
		this in turn reduces the	recreation and tourism
		concentration of carbonate ions	
		in seawater. This process has	
		significant implications for	
		marine organisms that form	
		calcium carbonate	
		shells/structures (such as coral).	

VALUE	DESCRIPTION (CLIMATE & AIR)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
		RESOURCES	
Drought	Regional warming has increased the intensity of recent droughts in south-eastern Australia. In general, the term 'drought' means an acute water shortage caused by a serious or severe rainfall deficiency (lowest 10% of records) over a period of three months or more.	Droughts reduce vegetation growth and surface cover for all vegetation types, leaving the catchment highly susceptible to the erosive effects of high intensity wind and rainfall. Infiltration is lower and run-off is higher under lowered ground	Droughts cause a high financial and emotional burden to the wider business community. The effects of some major droughts can severely impact the Australian economy.
Bushfires	Extreme fire weather has increased since the 1970s. Bushfire weather and fire danger is expected to increase alongside the increases in temperature and drier conditions. With a doubling of carbon dioxide concentrations in the atmosphere, the number of days of very high and extreme fire danger increases, due largely to the higher temperatures. However, the actual bushfire risk also depends on fuel load, which could be less in drier conditions.	Fire is an integral component of the Australian landscape. Many plant communities depend on fire for reproduction or have adaptations to cope with it. However, the increased incidence of fire is likely to change the floristic composition and ecology of the area.	In grazing, the reduced incidence of fire has historically resulted in woody thickening, which negatively affects ecosystem viability and biodiversity. It is not known to what extent human intervention will have on the presence or absence of fire in the region's ecosystems in the future. Wild fires in southern states have had catastrophic effects on communities through their loss of housing and lives. Such wildfires follow extreme wet periods and subsequent dry periods. Such weather conditions are expected to increase in the region.

VALUE	DESCRIPTION (CLIMATE & AIR)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
		RESOURCES	
High Intensity	Regional areas have experienced increases in the frequency, intensity	High intensity storms will	A higher incidence of flooding
Storms	or amount of heavy precipitation. This means that there is a trend	produce high volumes of run-off	and a disruption to transport and
	toward heavier rainfall events. In the future, extreme rainfall events	into local streams and creeks.	community functionality is
	are likely to become more intense and frequent over many regional	High rates of run-off can also	expected, with increased
	areas.	lead to a loss of water infiltration	insurance premiums in flood-
		that can be stored in the soil	prone areas. Loss of livestock
		profile for potential production.	and crops as well as the stripping
		High intensity rainfall events are	of top quality agricultural soils
		the main provider of run-off or	from the alluvial plains in
		transport mechanism for	particular, is expected.
		downstream impacts of soil,	
		nutrients and pesticides in the	
		landscape.	
Extreme	Heatwaves and hot days and nights have increased over most land	Productivity of native	The region's liveability will be
Temperatures	areas regionally. Many areas have experienced longer and more	communities will be affected.	heavily impacted if the predicted
	intense heatwave conditions. As temperatures continue to increase	Many native plant communities	increases are realised. The death
	globally, heatwaves are expected to occur frequently and persist for	will change in both structure and	rate in the young, infirm and
	longer.	form. Native birds and animals	elderly will increase during these
		will suffer heat stress and	extreme events. Water usage
		increased mortality due to	and power demands for cooling
		extreme heat.	will rise rapidly during these
			events.

VALUE	DESCRIPTION (CLIMATE & AIR)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
		RESOURCES	
Flooding	The incidence of coastal flooding has increased since 1970. This	The Fitzroy River catchment has	Flooding will have a major effect
	flooding has been exacerbated by rising sea levels. If emissions	historically produced severe	on communities and their
	continue to increase unabated, the region's sea level could rise by	flooding following heavy rainfall.	wellbeing. Any incidence of
	nearly 1 m by 2100, compared to its average level between 1986 and	The Fitzroy River's major	increased flooding will cause
	2005. Flooding within the region will increase due to high intensity	tributaries are the Dawson,	economic hardship through the
	rainfall events.	Mackenzie, Isaacs, Connors and	loss and damage to community
		Nogoa rivers. These rivers rise in	infrastructure, as well as crop
		the eastern coastal ranges and in	and livestock losses.
		the Great Dividing Range and	
		join together about 100 km west	
		of Rockhampton. Major floods	
		can result from either the	
		Dawson or the	
		Connors/Mackenzie rivers.	
		Significant flooding in the	
		Rockhampton area can also	
		occur from heavy rain in the	
		local area below Riverslea.	
Cyclones	There is mounting evidence that the destructive potential of tropical	Destructive winds and heavy	Significant economic impact
	cyclones globally has increased in recent decades. For the Australian	rainfall will lead to major	through the loss of property and
	region, there is evidence from the period 1970 to 1997 that although	impacts on affected plant and	infrastructure
	there was a decrease in the number of tropical cyclones was	animals communities.	
	recorded, the number of intense cyclones increased.		Loss of life likely

VALUE	DESCRIPTION (CLIMATE & AIR)	SIGNIFICANCE TO NATURAL	SIGNIFICANCE FOR HUMAN USE
		RESOURCES	
Extreme Sea Level Events	Many of the risks due to sea level rise are associated with inundation events caused by high tides and storm surges that are amplified by sea level rises. Such events are very sensitive to small increases in sea level, and the probability of these events increases in a highly non- linear as sea levels increase. These events damage human settlements and infrastructure in low-lying coastal areas, and can lead to erosion of sandy beaches and soft coastlines. While a sea level rise of 0.5 m — less than the average waist height of an adult human — may not seem like a matter for much concern, such modest levels of sea level rise can lead to unexpectedly large increases in the frequency of extreme high sea level events.	Extreme sea level events will result in saltwater ingress into highly sensitive freshwater coastal systems such as the marine plains of the Broadsound region, resulting in significant loss of these habitats.	Low lying coastal communities will be affected — notable in the Capricorn and Broadsound regions.
Atmospheric Carbon	Many of the region's key industries are carbon-intensive, or rely on carbon-intensive inputs. The Fitzroy division represents over 10% of Queensland's CO ₂ emissions, mostly from a small number of large emitters.	For many plants, CO ₂ enrichment has the potential to increase productivity. However, the consequential increase in temperature and continental drying may negate any positive effect.	The price on carbon as a pollutant is expected to increase globally and regional industries, as disproportionate emitters, are likely to be hard hit by any cross- compliance or penalty cost measures. This could lead to a change in industry structure and form in the region.
Air Quality	The region's air quality is likely to be affected by increased dust haze and periodic dust storms associated with increasing aridity and extreme events. In addition, significant impacts on the air shed are expected through the rapid regional expansion of heavy industry and mining. This increase in heavy industry will result in significant increases in the regional contribution of NO _x , SO _x and particulate matter and specifically an increase in CO ₂ equivalents. This will also attract global interest in the region's air pollution stream.	There will be significant regional contribution to greenhouse gases. In addition, the major impact of declining air quality will be on human health, most affecting those suffering from diseases such as asthma.	Reduced air quality and increased dust haze linked to drying conditions will result in increased chronic respiratory disorders and demand for health care.